Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images

نویسندگان

  • Heran Yang
  • Jian Sun
  • Huibin Li
  • Lisheng Wang
  • Zongben Xu
چکیده

Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. The proposed method, dubbed deep fusion net (DFN), is a deep architecture that integrates a feature extraction subnet and a non-local patch-based label fusion (NL-PLF) subnet in a single network. The network parameters are learned by end-to-end training strategy for automatically learning deep features that enable optimal performance in a NL-PLF framework. Besides, the learned deep features are further utilized in defining a similarity measure for atlas selection. We evaluate our proposed method on two public cardiac MR databases of SATA-13 and LV-09 for left ventricle segmentation, and our learned DFNs with extracted deep features for atlas selection at testing phase achieve state-of-the-art accuracies, e.g., 0.833 in averaged Dice metric (ADM) on SATA-13 database and 0.95 in ADM for epicardium segmentation on LV-09 database. Besides, our method is robust to the cross-database evaluation, e.g., the DFN learned on LV-09 database achieves 0.815 in ADM on SATA-13 database. We also test our proposed method on Cardiac Atlas Project (CAP) testing set of MICCAI 2013 SATA Segmentation Challenge, and our method achieves 0.815 in Dice metric, ranking as the highest result on this dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Fusion Net for Multi-atlas Segmentation: Application to Cardiac MR Images

Atlas selection and label fusion are two major challenges in multi-atlas segmentation. In this paper, we propose a novel deep fusion net for better solving these challenges. Deep fusion net is a deep architecture by concatenating a feature extraction subnet and a non-local patchbased label fusion (NL-PLF) subnet in a single network. This network is trained end-to-end for automatically learning ...

متن کامل

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels ...

متن کامل

Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

Robust whole-brain segmentation: Application to traumatic brain injury

We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09641  شماره 

صفحات  -

تاریخ انتشار 2017