Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images
نویسندگان
چکیده
Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. The proposed method, dubbed deep fusion net (DFN), is a deep architecture that integrates a feature extraction subnet and a non-local patch-based label fusion (NL-PLF) subnet in a single network. The network parameters are learned by end-to-end training strategy for automatically learning deep features that enable optimal performance in a NL-PLF framework. Besides, the learned deep features are further utilized in defining a similarity measure for atlas selection. We evaluate our proposed method on two public cardiac MR databases of SATA-13 and LV-09 for left ventricle segmentation, and our learned DFNs with extracted deep features for atlas selection at testing phase achieve state-of-the-art accuracies, e.g., 0.833 in averaged Dice metric (ADM) on SATA-13 database and 0.95 in ADM for epicardium segmentation on LV-09 database. Besides, our method is robust to the cross-database evaluation, e.g., the DFN learned on LV-09 database achieves 0.815 in ADM on SATA-13 database. We also test our proposed method on Cardiac Atlas Project (CAP) testing set of MICCAI 2013 SATA Segmentation Challenge, and our method achieves 0.815 in Dice metric, ranking as the highest result on this dataset.
منابع مشابه
Deep Fusion Net for Multi-atlas Segmentation: Application to Cardiac MR Images
Atlas selection and label fusion are two major challenges in multi-atlas segmentation. In this paper, we propose a novel deep fusion net for better solving these challenges. Deep fusion net is a deep architecture by concatenating a feature extraction subnet and a non-local patchbased label fusion (NL-PLF) subnet in a single network. This network is trained end-to-end for automatically learning ...
متن کاملMulti-Atlas Segmentation of the Cardiac MR Right Ventricle
As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels ...
متن کاملAutomatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion
. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملMulti-atlas segmentation with augmented features for cardiac MR images
Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...
متن کاملRobust whole-brain segmentation: Application to traumatic brain injury
We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.09641 شماره
صفحات -
تاریخ انتشار 2017